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Project Summary

The stated goal of the research was to demonstrate that robustly computable motion features
can be used directly as a means of detecting and recognizing moving objects. Specifically, the
goal was to design, implement, and test a general framework for detecting movement from a
moving platform, and recognizing both distributed motion activity on the basis of temporal tex-
ture, and complexly moving, compact objects on the basis of their action. This recognition
approach contrasts with the reconstructive approach that has typified most prior work on motion.
The underlying motivation is the observation that, for objects that typically move, it is frequently
easier to identify them when they are moving than when they are stationary. Specifically, in the
case of temporal texture, we proposed to extract statistical spatial and temporal features from
approximations to the motion field and use techniques analogous to those developed for gray-
scale te-ture analysis to classify regional activities such as windblown trees, ripples on water, or
chaotic fluid flow, that are characterized by complex, non-rigid motion. For action identification,
we proposed to use the spatial and temporal arrangement of motion features in conjunction with
simple geometric itage analysis to identify complexly moving objects such as machinery and
locomoting people and animals. The proposed work has practical applications in monitoring and
surveillance, and as a component of a sophisticated visual system.

By and large, the goal of the project were accomplished. A number of papers describing the
work have appeared in technical journals and conferences, and prototype code implementing the
algorithms as well as test data, is available by request. A detailed technical description of the
work is contained in three papers that are attached to this report.

The first phase of the project addressed the classification of temporal textures via statistical
characteristics of the associated motion fields. We developed a group of statistical measures
involving first and second order characteristics of the motion field. These measures included dif-
ferential quantities such as curl and divergence, and spatial statistics such as directional co-
occurrence features. When incorporated into simple nearest-neighbor classifiers, these measure
proved successful in distinguishing a number of natural temporal textures. Principle component
analysis, carried out in the motion feature space was used to evaluate the relative effectiveness of
the various measures. This work is described in the paper "Qualitative Recognition of Motion
Using Temporal Texture" attached to this report.

The second phase of the work involved the detection, isolation, and tracking of periodically
moving objects. This group includes objects such as walking and running people, running, flying,
or swimming animals, and some sorts of machinery. To human observers, many of these objects
can be more readily identified by their motion signatures than by their shape - particularly in
low-resolution or high-clutter regimes. Identification of objects in this group is also important in
many practical applications. We developed a technique based on the Fourier transform that
allowed us to flag and isolate periodically moving objects in real scenes. The method is general,
and applies to a wide variety of situations, including those with an actor is translating against a
varying background, which cannot be characterized by a simple cyclical image. This work is
described in the attached paper "Detecting Activities".

The final phase of the work involved the identification of periodic activities once they had
been isolated in an image, e.g. whether the motion is produced by a walking or a running person,
or something else entirely. Previous approaches to this problem have relied upon analysis of
joint trajectories, often obtained by attaching lights to the limbs of an actor. The problem with
this approach is that it is not clear how to obtain the required trajectories from a raw image
sequence - the joints must be identified and tracked. It also is hard to generalize to other motions.
We developed a method for classifying periodic movement based on low-level motion features.
Basically, the detection and isolation procedures developed in the previous phases of the research
allowed us to define a canonical form for arbitrary periodically moving objects. With the data in



this normalized form, a representation consisting of a spatiotemporal template of local motion
features could be effectively used to classify a wide variety of moving objects. Since no prior
models of the objects are required, the technique is more general than those based on joint trajec-
tories. The method was demonstrated on a database of real-world image sequences containing a
variety of movements including running and walking people, people on swings, and mechanical
animals. The technique seems to have sufficient resolution to distinguish, for example, walking
from running, as well as from less similar motions, across multiple actors. It does not have the
resolution to reliably distinguish individuals on the basis of their gait. This work is described in
the attached paper "Recognizing Activities".
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in the atmosphere. Such motions, referred to as temporal
We describe a method of visual motion recognition applicable to textures, can be efficiently identified using statistical pat-

a range of naturally occurring motions that an characterized by tern recognition techniques based on invariant features of
spatial and temporal uniformity. The underlying motivation is the the motion field.
observation that, for objects that typically move, it is f Visual motion has, of course, long been considered an
easier to identify them when they are moving than when they are
stationary. Specifically, we show th- certain statistical spatial important source of information in natural vision sys-
and temporal features that can be derived from approximations to tems. Many of the (comparatively) unsophisticated sys-
the motion field have invariant properties, and can be used to tems, such as those possessed by insects and lower verte-
classify regional activities such as windblown trees, ripples on brates, are essentially blind to anything that is not
water, or chaotic fluid flow, that are characterized by complex, moving. Even in the more sophisticated systems pos-
nonrigid motion. We refer to the technique as tenporaI texture sessed by higher vertebrates, including man, motion in
analysis in analogy to the techniques developed to classify gray- the visual field retains an important role. Moving objects
scale textures. This recognition approach contrass with the recon- in a scene are typically the first attended to, and a wide
structive approach that has typified most prior work on motion. variety of (semi)quantitative information relating to ob-
We demonstrate the technique on a number of real-world image ject segmentation, depth, three dimensional shape, and
sequences containing complex movement. The work has practical object and observer motion, seems to be derived from the
application in monitoring and suirvillance, and as a component ofa sophisticated visual system. c im Amm am &m visual motion field.

The potential wealth of derivable information inspired

a large body of work on the computation of exact geomet-
1. INTRODUCTION ric quantities such as the 3-D shape of objects, their loca-

tion, and the motion of the observer. This reconstruction
Who has not watched ripples spread across a pool and problem is sometimes referred to as the structure-from-

known water thereby? Or seen leaves shimmer their sil- motion problem. Research has been typically divided
ver backs in a summer breeze and known a tree? Who has into two main areas: finding 3-D information from 2-D
not known the butterfly by her fluttering? Or seen a dis- projected motion assuming it is available, and determin-
tant figure walking and known there goes a man? In order ing projected motion from raw image sequences. Results
to successfully interact with a dynamic world, an agent have been obtained in both areas; however, the high-level
must interpret the activity around it. In the vision sys- shapes from motion algorithms tend to be very sensitive
tern, this requires the interpretation of visual motion. The to the accuracy of the underlying motion information,
everyday experience of visual motion incorporates a con- and the accuracy of the computed motion information
siderable element of recognition; this may even be its has typically been low. Consequently, only moderate
dominant attribute. Yet surprisingly, this aspect of mo- success has been achieved in this area.
tion has been neglected in the literature on computational The emphasis on visual motion as a means of quantita-
motion analysis, which has emphasized instead, a recon- tive reconstruction of world geometry has tended to ob-
structive approach. We show here that robustly comput- scure the fact that motion can also be used for recogni-
able motion features can be used directly as a means of tion. In fact, in biological systems. the use of motion
recognition. In particular, we argue that there exists a information for recognition is often more evident than its
class of image motions, common in scenes of the natural use in reconstruction. A simple example occurs in the
environment, that are characterized by structural or sta- case of the common toad Bufo bufo for which any elon-
tistical self-similarity in space and time. Typical exam- gated object within a certain size range that exhibits mo-
pies might include ripples on a pool, a flock of birds, tion along the long axis is identified as a potential food
windblown grass or trees, and turbulent weather patterns item, and elicits an orienting response [Ewar87]. Birds
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QUALITATIVE RECOGNITION OF MOTION 79

ignore the natural movement of trees in the wind, but irrelevant. The fundamental problem of vision is deter-
respond immediately to the approach of a predator. More mining what image information can be used and extract-
generally, stylized movements seem to be a universal ing an efficient representation for it. Despite this fact. the
form of communication between animals with eyes, from goal of machine vision has often been portrayed as the
the aggressive posturing of various fiddler crabs (Uca problem of devising information transforms that preserve
species), to the mating dance of the blue footed booby as much of the original information as possible. albeit in a
(Sula nebouxi), to the expressive facial movements of purportedly more convenient form, on the grounds that
baboons. one never knows what one might need, and that informa-

Humans have a remarkable ability to recognize differ- tion once thrown out cannot be recovered. Reconstruc-
ent kinds of motion, both of discrete objects. such as tionist approaches in which the goal is to determine 'in-
animals or people, and in distributed patterns as in wind- trinsic images- representing for example the distance,
blown leaves, or waves on a pond. A classic illustration surface normal, relative velocity, reflectivity, and illumi-
of motion recognition by humans is provided by Moving nation for every point in the image, are of this sort. We
Light Display experiments where the sole source of infor- believe that such a least commitment strategy is exactly
mation about a moving actor is provided by lighted points the wrong approach. Assuming ignorance about a situa-
attached to a few joints [Joha73]. People shown these tion in which considerable structure exists is generally
images dismiss single frames as meaningless dot patterns poor policy, and in the case of vision, it can be disas-
but can recognize characteristic gaits such as running or trous. The strategy that should be followed is to throw
walking, and even gender and familiar individuals from out as much information as quickly as possible on the
the sequential presentation. grounds that what is thrown out does not have to be

Such abilities suggest that, in the case of machine vi- processed and does not tie up limited computa:ional re-
sion, it might be possible to use motion as a means of sources. This might be termed a strategy of most commit-
recognition directly, rather than indirectly through a geo- ment. The behavioral approach provides a mechanism
metric reconstruction. In addition to the biological moti- for deciding what can be thrown out via the use of a prior
vations, there are computational reasons for considering knowledge about the functionality of the system. Know-
motion as a recognition modality. One advantage is that ing exactly what information is needed and what it will be
the motion field, insomuch as it can be extracted at all, is used for also permits the system to alter its interaction
robust with respect to lighting changes, and much more with the world dynamically, in order to make that infor-
simply related to shape than is image luminance. Further- mation more readily obtainable.
more, if the task is to find an object that is known to be We define qualitative vision as the computation of
moving, motion can be used to efficiently presegment the iconic image properties (qualities) having a stable rela-
scene into regions of high and low interest. This can fre- tionship to functional primitives. These functional rela-
quently be done even if the observer is itself moving tions are the building blocks for visual behavior. The
[Nels90]. iconic nature of qualitative primitives provides the neces-

Recognition can thus be viewed as an alternative, more sary information reduction; only a minute fraction of the
qualitative approach to utilizing visual motion. Structure- original information is present, but it is directly relevant
from-motion can be viewed as a general transformation to the task at hand. Recognition is a qualitative statement
of information in one form (time varying images) into a in this sense. It classifies a situation in terms relevant to
(presumably) more useful form (e.g., depth maps). Rec- some functionality. In the case of motion, there are a
ognition, on the other hand, serves to identify a specific variety of applications in which robustly computable mo-
situation of interest to the system, for instance, the ap- tion information can be used for identification directly.
proach of a fly if you are a frog, or a bird if you are a fly. and much more efficiently, than via traditional 3-D recon-
A reconstructed world model contains a lot of informa- struction.
tion, possibly enough to find a fly if you are a frog, but it An example of a directly useful motion feature is the
also contains a lot of information that a frog has no inter- regional divergence of the motion field, which can be
est in, and that was expensive to obtain, used to detect approaching objects. In houseflies (Musca

The above illustrates a central point of the active/be- domestica) divergent flow activates a landing reflex when
havioral approach to vision, namely, that in any practical approaching a surface. We have implemented a collision
system, both the information extracted and its represen- avoidance system based on the divergence cue [Nels89].
tation must take into account the function of the system. The basic idea is that a region on a collision course with
The primary reason is that the total quantity of informa- the observer will be expanding and thus display positive
tion contained in a visual signal is far greater than any divergence. We utilized a set of features termed direc-
system needs or can handle. In most proposed applica- tional divergences DJf parameterized by a polar angle 6
tions of vision, all but a tiny fraction of this information is and given by
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D j,.-- = c s . + si2 f0-7

DJ +O sin4--
di;..ax

+ si 6 cos od .

where f, is the component of the motion field f in the d
direction. These are equivalent to I-D divergences along
various axes. and can be robustly computed from pro-
jected flow information, which is easier to obtain than the
full motion field. The system was used to guide a robot
vehicle between obstacles. Figure I shows the diver-
gence produced by a pair of obstacles toward which the
vehicle is moving.

The divergence is a simple example of a temporal tex-
ture. that is, a regional property that identifies an area as
a certain sort of "stuff- (here stuff that might collide with
you). somewhat as gray-level textures can identify re-
gions in a static image. Examples of more complex tem-
poral textures, which would require a combination of
several motion features for classification, include the flut-
tering of leaves on a tree; the glitter of sunlight from
distant water and wave motion in nearby water; the mo-
tion within a flock of birds, on top of an anthill, or in a
crowd at a football game: the effect produced by moving
near a fractal object such as a bush; a snowfall, a water-
fall; the turbulent curl of smoke; and the swirl of clouds
in a weather system.

There are a number of potential applications for motion
recognition. One area in which it would be useful is in -sop
automated surveillance. Motion detection via image dif-
ferencing can be used for intruder detection; however,
such systems are subject to false alarms, especially in
outdoor environments, since the system is triggered by
anything that moves, whether it be a human, a dog, or a FIG. 1. Obstacle detection via flow field divergence.

tree blown by the wind. Motion recognition techniques,
both of the discrete and textural variety have the poten-
tial to disambiguate the motions of different origin. An-
other application is in industrial monitoring. Many manu- appr oval a besn) bt nossiniothes (ecg..e
facturing operations involve a long sequence of simple man climbing over a wall). Other possibilities include
operations, each performed repeatedly and at high speed monitoring satellite imagery for developing storm sys-
by a specialized mechanism at a particular location. It tems and crowds for incipient disturbances. General mo-

should be possible to set up one or more fixed cameras tion recognition techniques could also be applied to areas

that cover the area of interest, and to characterize the such as gesture recognition [Rhyn86] and handwriting

allowed motions in each region of the image(s). Abnor- analysis.

mal activity would violate the prior constraints and allow
the location of a problem to be identified quickly. This 2. BACKGROUND AND RELATED WORK
sort of analysis would be particularly valuable for the fast
detection and neutralization of catastrophic failures that Motion recognition in general has received relatively
traditional quality control systems might not identify in little attention in the literature. Most computational mo-
time to prevent major damage. A similar situation arises tion work, as mentioned previously, has been concerned
in security surveillance of a compound, where certain with various aspects of the structure-from-motion prob-
types of motion may be expected in certain areas and in lem. There is a large body of psychophysical literature
certain situations (e.g.. the opening of a gate after an addressing the perception of motion, most of it con-
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cerned with primitive percepts. A modest amount of this [ -t
work addresses more complicated motion recognition is- R(x, v. i) = lim [r 7.yj
sues [Joha73. Cutt8l. Hoff82. Hild87J, but the models
and descriptions have typically not been implemented. The motion field depends on the motion of the camera.
Various computational models of temporal structure the three-dimensional structure of the environment, and
have been proposed (e.g.. [Chun86. Feld88]) but much of the three-dimensional motion (if any) of objects in the
this work is at a fairly high level of abstraction and has environment. If all these components are known, then it
not actually been applied to visual motion recognition is relatively straightforward to calculate the motion field.
except in rather artificial tests. Some of the best work in In the traditional approach to motion analysis, the ques-
temporal pattern recognition has actually been done in tion has been whether the process can be inverted to
the context of speech processing [Juan85, Tank87, obtain information about camera motion and structure of
Elma88]. the environment. This is the basis of the structure-from-

A few studies have considered highly specific aspects motion problem. The solution is not easy, and if arbitrary
of motion recognition computationally. Pentland [Pent891 shapes and motions are permitted in the environment,
considered lip reading, and implemented a system that there may not be a unique solution. However, it can be
could recognize spoken digits with 70-90% accuracy mathematically demonstrated tl',at. in many situations, a
over five speakers. The system required the location of unique solution exists.
the lips to be entered by hand, and depended on an ex- The existence of such solutions has inspired a large
plicitly constructed lip model. Rashid [Rash8O, Godd89] body of work on the mathematical theory of extracting
considered the computational interpretation of moving shape and/or motion information from the motion field.
light displays, particularly in the context of gait determi- There have been two basic approaches to the problem.
nation. This work emphasized rather high-level symbolic The first utilizes point correspondences in one or more
models of temporal sequences, an approach made possi- images, generally under the assumption of environmental
ble by the discrete nature of the moving light displays. rigidity [Ullm79, Tsai8l]. This is equivalent to knowing
The results were quite sensitive to discrete errors and the motion field at isolated points of the image. Several
thus highly dependent on the ability to solve the corre- authors have obtained closed form solutions to the shape
spondence problem and accurately track joint and limb from motion problem in this formulation, obtaining a set
positions. This severely limits the general applicability of of linearized equations (Long8l, Tsai84J. The second ap-
the method. Anderson et al. [Ande85] describe a method proach uses information about the flow and its deriva-
of change detection for surveillance applications based tives in a local neighborhood under some assumption
on the spectral energy in a temporal difference image. about the structure of environmental surfaces (e.g., they
This has the flavor of the temporal texture analysis de- are planar) [Praz8l, Bo1187, Waxm87J. In this case, the
scribed here, but was not generalized to other motion end result is a set of equations relating the flow field
features or more sophisticated recognition. derivatives to the camera motion and the three-dimen-

Some of the work done in the context of the structure sional structure of the environment. Most of these stud-
from motion problem, particularly the methods that have ies, however, have started with the assumption that de-
been developed to obtain local motion information from tailed and accurate information, either in the form of
image sequences, is relevant to temporal texture. Al- point correspondences or dense motion fields, is avail-
though we make somewhat different use of the informa- able. Unfortunately, the solutions to the equations are
tion, this work has motivated and provided foundations frequently inordinately sensitive to small errors in the
for our approach, and it is thus appropriate to review the motion field. In the case of point correspondences, Tsai
field. and Huang [Tsai84] report 60% error for a !% perturba-

A camera moving within a three-dimensional environ- tion in input for some instances using their method. This
ment produces a time-varying image that can be charac- error sensitivity is due both to inherent ambiguities in the
terized at any time t by a two-dimensional vector-valued motion fields produced by certain camera motions, at
function f known as the motion field. The motion field least over restricted fields of view, and (in the second
describes the two-dimensional projection of the three- approach) to the reliance on differentiation of the flow
dimensional motion of scene points relative to the cam- field, which amplifies the effect of any error present in the
era. Mathematically, the motion field is defined as fol- data.
lows. For any point (x, y) in the image, there corresponds The two approaches to obtaining shape from motion
at time t a three-dimensional scene point (x', y', z') utilize somewhat different methods for extracting motion
whose projection it is. At time t + At, the world point (x', information from image sequences. The methods using
y', z') projects to the image point (x + Ax, y + Ay). The point correspondences rely on matching techniques simi-
flow field at (x, 3) at time t is given by lar to those employed in stereo vision [Moro79. Marr79.
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Barn80J. This process is well known to be difficult since gradient magnitude, the agreement can be made arbitrar-
features may change from one image to the next, and ily close. This corresponds to the intuition that for
even appear and disappear completely. strongly textured images the motion field and the optical

Techniques for computing dense motion fields have re- flow are approximately equal. A few authors have at-
lied heavily on differential methods, which attempt to tempted to explicitly include some of these effects (e.g.,
determine the motion field from local computations of the [Burt89]), but it is not clear that any great advantage has
spatial and temporal derivatives of the gray-scale image. been obtained thereby.
The first derivative methods originally proposed by Horn On the whole, despite a great deal of effort expanded in
and Schunk [Horn8lJ must deal with what is known as devising flow invariants, regularization methods, and
the aperture problem, which refers to the fact that only matching techniques, neither correspondence nor flow
the component of optical flow parallel to the local image field methods have yielded data sufficiently accurate to
gradient can be recovered from first-order differential in- allow the theoretical structure-from-motion results to be
formation. Intuitively, the aperture problem corresponds reliably applied. Adiv fAdiv85] argues that inherent near
to the fact that for a moving edge, only the component of ambiguities in the 3-D structure-from-motion problem
motion perpendicular to the edge can be determined. may make the goal of extracting information sufficiently
This effect is responsible for the illusion of upward mo- precise to allow uniform application of the theoretical
tion produced by the rotating spirals of a barber pole solutions unattainable in practice. Verri and Poggio
where either vertical or horizontal motion could produce [Verr87] make essentially the same point, arguing that
the local motion of the edges, and the eye chooses the the disagreement between the motion field and the optical
wrong one. In order to determine both components of the flow makes the computation of sufficiently accurate
flow field vector, information must be combined over re- quantitative values impractical.
gions large enough to encompass significant variations in An alternative is to devise qualitative applications that
the gradient direction. The most common method of do- can make use of inaccurate flow information [Thom86,
ing this involves some form of regularization [Horn8l, Nels88, Nels89]. The motion recognition strategies pro-
Anan95, Nage86]; however, such methods often result in posed here represent one such application. Many of the
blurring of motion discontinuities. A nonblurring method motion features proposed in the next section are qualita-
known as constraint line clustering has been proposed by tive in the sense that their detection does not rely on
Schunck [Schu84]. Techniques using higher order deriva- highly accurate measurements of the motion field. In
tives to avoid the aperture problem have been proposed fact, useful motion features can be obtained from partial
[Nage83, Uras88]; however, these suffer from stability information such as the projected flow computed in the
problems due to multiple differentiation and typically re- first step of the Horn and Schunck procedure, for exam-
quire extensive smoothing to produce clean results, pie, the directional divergence used for obstacle avoid-
Other methods include spatiotemporal energy methods ance in [Nels89]. To reiterate, our idea is to use motion
[Heeg87], Fourier methods based on phase correlation information for identification directly, rather than pro-
[Burt89), and direct correlation of image patches ceeding indirectly, through the reconstruction of an ana-
[Barn80, Litt88]. Recent work by Anandan [Anan89] pro- log 3-D world model.
vides a common framework into which many of these
methods can be incorporated. 3. TEMPORAL TEXTURE

A potential problem with most of the above approaches
is the assumption that the motion field manifests itself Classical gray-level texture analysis is concerned with
locally as a rigid 2-D motion of an image pat ,h. Unfortu- the identification of spatial invariances in the gray-level
nately. the local apparent motion of the image, known as patterns in an image region. These invariances may be
the oplicalflow, does not necessarily correspond to the 2- either structurally or statistically defined. The basic idea
D motion field. The most obvious demonstrations are is to characterize different sorts of "stuff* of indetermi-
pathological examples. For instance, a spinning, feature- nate spatial extent in terms of such invariances. In this
less sphere under constant illumination has zero optical article we extend this basic idea into the temporal dimen-
flow, but a nonzero motion field. Conversely, a station- sion with the idea of recognizing similar stuff in dynamic
ary sphere under changing illumination has nonzero opti- scenes. This is motivated in part by the existence of a
cal flow, but zero motion field. Image patches also un- large class of natural phenomena that seem to have char-
dergo various nonrigid deformations such as expansion acteristic motions, but indeterminate spatial extent. Ex-
and skewing. Verri and Poggio [Verr87] have shown that amples include windblown trees or grass. turbulent flow
only under special conditions of lighting and movement in cloud patterns, ripples on water, falling snow. and the
do the motion field and the optical flow correspond ex- motion of a flock of birds or a crowd of people. The
actly. They also show, however, that for sufficiently high motion in a temporal texture is distinct from that in pat-
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terns such as walking and cycling, which involve struc- the fact that measures can be made in both space and
ture at a single location, time allow considerable latitude in designing features.

Temporal texture could be analyzed directly as a three- Since textures are characterized by statistical regularities
dimensional signal using generalizations of the tech- in the occurrence of local structure, extraction of fea-
niques applied to two-dimensional fields. However, since tures useful for classification generally involves at least
most changes along the time dimension are due to motion two tiers of processing: A local feature extraction stage.
in the image, it makes sense to preprocess the time-vary- and (at least one) spatially or temporally extended inte-
ing image to obtain motion information, as it is in object gration stage. Local features can be any useful quantity
motion that the physical invariances lie. In this case, a that can be associated with a point in the image. Exam-
natural choice is the optic flow field. The basic source of pies include flow magnitude and direction, differential
information is thus a time-varying vector field represent- measures such as divergence and curl, and local uniform-
ing an approximation to the two-dimensional motion field ity measures. The spatiotemporal motion energy filters
induced by movement in the world. Such a field contains introduced by Heeger [Heeg87] could also provide useful
considerably more information than the scaler valued measures in this context. Typically these are expected to
field associated with gray-level texture analysis. In addi- vary within a texture, thus necessitating the integration
tion, the direction and magnitude of motion have a more phase. Extended measures are most frequently based on
direct relationship to typically salient events in the world quantities such as means or variances, but other ex-
than the gray level of a single pixel. Consequently, cer- tended measures, such as Fourier coefficients and cooc-
tain types of recognition might be expected to be easier. currence statistics, can be used. The most typical struc-
For example, in the right context, fast downward motion ture for a temporal texture feature involves extended
could be taken as evidence of a falling object. It is diffi- spatial or temporal (or both) measures of spatiotemporal
cult to envisage making any similar statement about (say) microfeatures. Features can also be derived from ex-
gray level 147. A problem with using optic flow is that it is tended spatial measure of extended temporal features
difficult compute accurately. One solution is to devise and vice versa.
measures that are insensitive to inaccuracy. Another is to In order to simplify the motion preprocessing. we con-
utilize partial information. An example is the gradient sidered features based on the gradient parallel compo-
parallel component of the optic flow, which is simpler to nent of the motion field, also referred to as the normal
compute locally from an image sequence than the full flow. The simplest local motion measures are the magni-
motion field. tude and direction of the normal flow. We examine sev-

Despite the differences in domain, some techniques of eral statistical features based on the distribution of these
spatial texture analysis are applicable to temporal tex- first-order quantities. The direction and magnitude can be
tures. Spatial texture analysis is traditionally performed combined locally, both spatially and temporally, to ob-
using either statistical or syntactic methods. Statistical tain second-order local motion measures. We also exam-
methods utilize measures of local features that are ex- ine features based on the distribution of some second
pected to be similar within patches of the same texture. order measures. All these are descnrbed below.
Examples of measurements that have been used include A useful statistic based on the distribution of the nor-
gray-level cooccurrence matrices [Hara73. Conn80], mal flow magnitude is the average flow magnitude di-
Fourier power spectra (Bajc76, Chen82], and average vided by its standard deviation. The scaling by the stan-
magnitude response of filter masks [Laws8O, Mali89]. dard deviation has the effect of making the measure
There are also several methods based on estimation pa- robust under scaling changes. One way to think of this
rameters for a description of a region in terms of some statistic is as a measure of "peakiness" in the velocity
texture model. E-:amples include autoregressive models distribution. It is invariant under translation, rotation,
[Kash82] and Markov random fields [Kane82]. Syntactic and temporal and spatial scaling.
approaches are most appropriate for highly regular tex- We also considered statistics of second-order flow
tures and involve analyzing the geometric arrangement of magnitude features, namely. estimates of the divergence
primitive structural elements. In the case of natural tem- and curl of the motion field obtained from the normal
poral textures, techniques similar to the statistical gray- flow. Positive and negative divergence and positive and
level methods seem most appropriate, and most of the negative curl were taken as separate features to give four
features described in this article are of this type. As with different second-order features. The features used are the
spatial textures, the main criteria for selecting features mean values of these quantities over the region of inter-
are that they change little within a given texture (i.e., an est. They are invariant with respect to rotation and trans-
area of the same stuff). and that they vary significantly lation, but not scaling. If scale invariant features are de-
between different textures. sired, ratios of the differential measures can be used.

The dimensionality of the vector-valued flow field and A useful first-order statistic can be derived from the
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distribution of flow directions. Intuitively, what is being G. uniformly rotating image produced b% observer
measured is the nonuniformity in direction of motion. roll.
Our non-uniformity statistic was computed by discretiz-
ing the direction into eight possible values, computing a Representative examples of scenes and derived flow are
histogram over the relevant nAghborhood of the image. illustrated in Figs. 2A-2E. Figure 3 illustrates the tempo-
and summing the absolute ieviation from a uniform dis- ral dimension for two of the cases, showing a horizontal
tribution. It should be ;oted that the normal flow direc- slice through the spatiotemporal solid. The temporal axis
tion at a pixel is parallel (or antiparallel) to the gradient runs 'ertically.
direction. Thus measures based on the normal flow direc- For each sample texture, two image sequences consist-
tion alone depend on the underlying intensity texture. To ing of 16 256 x 256 pixel frames taken at 30 Hz %% ere split
reduce this dependence, the normal flow directions in the into quadrants to obtain eight independent sample image
hisiogram are normalized by the four-way histogram of sequences of 128 x 128 pixels. The normal flo'u field was
gradient directions. This feature is invariant under trans- computed between each consecutive pair of image
lation. rotation, and temporal and spatial scaling, frames using a multiresolution flow computation. with

Second-order measures of the normal flow direction the direction of normal flow quantized to one of eight
distribution can be derived from the difference statistics, directions. The end result of the processing was a sample
which give the number of pixel pairs at a given offset that of eight normal flow sequences of 15 frames each for each
differ in their values by a given amount. These difference texture.
statistics can be represented by a cooccurrence matrix of Classification experiments were run using a nearest
the normal flow direction surrounding a pixel. Cooccur- centroid classifier. More elaborate classifiers could be
rence matrices are computed for four directions (horizon- used. but the nearest centroid method gives a fairly direct
tal, vertical, positive diagonal, and negative diagonal) at a indication of the utility of the features. The features used
distance proportional to the average flow magnitude. were those described in the previous section. namely
This yields invariance with respect to scaling. In each
direction the ratio of the number of pixel pairs differing in a. mean flow magnitude divided by standard deviation
direction by at most one to the number of pixel pairs b. positive and negative curl and divergence estimates
differing by more than one is computed. This ratio is the
sum of the first two difference statistics to the sum of the c. nonuniformity of flow direction
last three difference statistics. Logarithms of the result- d. directional difference statistics in four directions.
ing ratios are used as a feature in each of the four direc-
tions, and represent a measure of the spatial homogeneity Normalization constants were computed so that the en-
of the flow. These features are invariant under transla- semble mean for each feature was 1. No more sophisti-
tion, rotation, and scaling. cated normalization procedure was found necessary.

The first four samples of each texture are used as a
training set to compute the centroid of the cluster corre-

4. EXPERIMENTAL RESULTS sponding to that texture in the feature space. The differ-
ent feature values are converted into common units by

A set of image sequences representing both oriented mapping the average of the resulting centroids to a unit
temporal textures such as flowing water and nonoriented vector. Table I contains the values of these features for
textures such as leaves fluttering in the wind was digi- each flow sample. It can be seen that. overall, the within
tized. In addition, sequences representing uniform ex- sample variation is smaller than the between sample vari-
pansion and rotation of a textured scene were obtained. ation as desired. No single feature is sufficient to distin-
These were used in classification experiments utilizing guish all the textures, but for each texture, there is at
the features described above. Seven different texture least one feature that clearly separates it from the others.
samples. listed below, were used for the experiments: For example, as would be expected, texture A. contain-

ing an approaching object, is distinguished by high diver-
A. fluttering crepe paper bands gence. For texture B. containing moving vertical bands.
B. cloth waving in the wind the second-order difference feature in the vertical direc-
C. motion of tree in the wind tion clearly separates it from the rest.

D. flow of water in a river The remaining four samples are tested using a nearest
centroid classification scheme. The results of classifica-

E. turbulent motion of water tion are summarized in Table 2. Note that none of the
F. uniformly expanding image produced by forward features alone is sufficient to separate all the textures, but

observer motion the combination gives 100% success in the classification
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TABLE I
Sample Features

a h c d

Pos Neg Po' Neg Pos Neg
Texture Mall div div curl curl Dir Hor Vert diag diag

A: Bands 1.083 0.591 -0.698 0.275 -0.199 0.488 5.013 9.084 5.192 5.178
1.009 9.640 -0.570 0.240 -0.223 0.663 4.679 8.356 4.962 5.055
1.081 0.467 -0.625 0.212 -0.209 0.837 4.358 7.878 4.518 4.409
1.221 0.544 -0.548 0.188 -0.203 0.694 5.319 8.954 5.540 5.452

B: Cloth 1.417 0.648 -0.620 0.314 -0.322 0.928 4.265 6.170 4.806 4.289
1.529 0.530 -0.557 0.323 -0.335 0.917 4.939 5.681 6.149 4.826
1.282 0.610 -0.597 0.317 -0.308 0.942 3.390 4.972 3.882 3.338
1,393 0.610 -0.647 0.337 -0.342 0.902 3.596 4.732 4.276 3.563

C: Plant 0.964 0.708 -0.216 0.196 -0.297 0.947 1.481 2.103 2,276 1.466
1.064 0.306 -0.434 0.263 -0.176 0.952 1.556 2.287 2.353 1.574

0.882 0.527 -0.436 0.258 -0.279 0.968 1.262 1.868 2.055 1.239
0.951 0.386 -0.392 0.294 -0.264 0.970 1.300 1.871 2.053 1.243

D: Water 1.293 0.446 -0.550 0.191 -0.161 0.864 4.637 5.148 7.154 4.792
1.494 0.486 -0.382 0.171 -0.187 0.814 5.025 5.617 7.038 5.110
1.258 0.517 -0.585 0.206 -0.186 0.885 4.297 4.777 6.218 4.505
1.512 0.448 -0.528 0.222 -0.225 0.887 3.869 4.176 6.073 3.876

E: Turbulence 1.123 0.728 -0.637 0.400 -0.399 0.946 2.4-54 2.972 3.962 2.521
1.206 0.811 -0.587 0.376 -0.408 0.929 2.616 3.052 4.303 2.699
1.106 0.595 -0.769 0.422 -0.397 0.945 2.186 2.733 3.671 2.250
1.062 0.799 -0.526 0.430 -0.427 0.945 2.164 2.611 3.677 2.152

F: Approach 1.099 0.462 -1.001 0.268 -0.231 0.947 2.175 3.167 2.661 2.241
1.076 0.397 -0.954 0.266 -0.206 0.922 2.668 3.327 3.791 2.785
1.028 0.336 -0.942 0.248 -0.186 0.922 2.366 3.173 3.272 2.490
1.018 0.422 - .018 0.331 -0.257 0.918 2.597 3.458 3.375 2.683

G: Roll 1.182 0.437 -0.395 0.095 -0.584 0.929 2.952 4.076 3.523 3.025
1.204 0.621 -0.420 0.083 -0.663 0.942 3.257 4.185 4.077 3.394
1.032 0.382 -0.353 0.053 -0.660 0.935 2.923 3.970 3.627 3.076
1.087 0.528 -0.337 0.110 -0.725 0.943 2.788 3.782 3.597 2.906

of the test cases. In fact, the second-order features alone
TABLE 2 are sufficient for successful classification in all cases.

Classification Results We also performed a principal component analysis of

Feature Correct Percentage these features to gauge the relative importance of differ-
combination classification success ent features in producing the variation in the sample val-

All 28 too ues. The first three principal components of the entire

b. d 28 t00 data set are shown in Table 3. Note that the first principle
a. d 24 85 component has a high eigenvalue and relatively high pro-
b. c 21 75 portions of the second-order features, particularly posi-
d 21 75 tive and negative divergence. This is consistent with the
b 20 71 finding that the second-order features alone are sufficient

for classification in this case. The principal components

TABLE 3

Principle Components

-omp a b c d Eigenvalue

1 0.29 0.51 0.95 0.02 -0.29 -0.20 0.15 0.20 0.18 0.16 54.95
2 -0.25 0.42 0.38 0.78 0.07 0.10 -0.82 -0.37 -0.89 -0.69 5.82
3 -0.09 0.78 -0.50 0.12 -0.16 0.01 0.16 0.06 -0.00 0.13 2.54
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FIG. 2. (A) Image and flow for paper bands. (B) Image and flow for cloth. (C) Image and flow for plant leaves. (D) Image and flow for water. (E)
Image and flow for turbulent motion.

within each sample contain small absolute coefficients for lustrated their utility in classifying a sample of real-world
the same second-order features, showing that these fea- temporal textures. Future work includes the analysis of
tures are most useful in classification, other feature classes, including purely temporal features

of the flow as well as Fourier techniques.
5. CONCLUSION AND FUTURE WORK We also plan to extend the technique to the recognition

of compact, possibly nonrigid, objects. This differs from
We have described a method of motion recognition textural recognition in that it is typically the detailed ar-

using temporal textures. This technique uses statistical rangement of features (in space and time), which we term
measures of local motion features as components of a the object's action, rather than regional statistics, that
feature vector that can be used in standard classification constitute the basis for identification. Though such an
methods. We identified several motion features that ap- extension will not provide a general solution to the object
pear to have desirable properties for recognition, and il- recognition problem, we think that there are a number of



QUALITATIVE RECOGNITION OF MOTION 87

a. a + _ A

4. 4+ K \

... ~~~~~. . .. v. . . W rx94 ,l
.. .. .. .. .. .. .. .. .. .. '" -4 A +4..'

5*4 ~ +. 4 . 4. 5

W 4tL\A4'

* ". a p a~ t. 4 . + a .

* ~ 4 4- ~ ~ P

C 9 *r4- 4 -

5' 4 -b4.* 4t - 4 ',4c t

~'4.

41~

I'm4 \144 4

FIG 2-44-4t wb 1 14'u'd



88 NEI-SON AND POLANA

7 4

... .......

A . .

image~~~~~ prcssn .n Coto. . 95 pp .86.1.4.

FIG.AanS. P.) Tnmndra. Alc copuaioa leaves.or and anpoa sliith foruruene

of a road is probably a car. This conjunction of features is the measurement of visual motion. Int. J. Co~npuit. Vision 2. 1989. 283-
fairly simple to compute. particularly compared to the 310.
requirements of static analysis. which must be able to tell [Ande85] C. H. Anderson. P. J. Burl. and G. S. van der Wal. Change

cars from boulders, architectural clutter, and shadows on detection and tracking using pyramid transform techniques, in Proceed-
the road. Similarly, the toad in Section I assumes that ings. SPIE Con 'ference on Intelligent Robots and Conmputer Vision.

anything small (it 'has a notion of distance and hence of Boston, MA, 198.5. pp. 300-305.

size from crude stereo). oblong, and moving in the direc- [Bajc76l R. Bajcsy' and L. Lieberman. Texture gradient as a depth cue.
lionof ts ong s god o ea (o atleas isworh a Cotnput. Graphics limage Process. 5, 1976. 52-67.

tino t ogaxis isgo oet(ratlati ot Ball8l] D. H. Ballard. Generalizing the Hough transform to detect
taste). arbitrary shapes. Pattern Recoitnit. 13(2). 1981. 111-122.

The simplest technique is to use conjunctions of mo- lBar,8OI S. T. Barnard and W_ B. Thompson. [)isparit% Anal~'is of
lion and geometric features. and more generally. spatio- Images. IE-EE Tranis. PAMI 204). 1980. 330- 140.

temporal templates specifying the rough spatial arrange- fBaum7Ol L. E. Baum and J. Eagon. A maximization technique occur-

ment of motion (and geometric) features. More ring in the statistical analysis of probabilistic functions of Markos.

sophisticated pattern recognition techniques include the chains. Anti. Mathi. tat. 41. 1970. 164-171.

generalized H-ough transform [Ball8I] and hypothesize- [Boll87l R. C. Bolles Epipolar Plane Analysis: An Approach to tDefer-

and-test schemes (Grim861. A candidate for handling mining Structure from Motion, in Proceedings. Internzatijonal Joint Con-
tim seuenes or hic a ixe teplae i inuffcletly ference ott Artificial Intellige'nce. l1987. pp. 7-15.
timeseqence fo whch afixd tmplae i inuffiienly Burt89J P. J. Burt. J. R. Bergen. R. Hingorani. R. Kolcz~nski. W. A.

flexible is the formalism of hidden Markov models Lee, A. Leung. J. Lubin. and H. Shvayster. Object tra'cking %%ith a
113aum7O. Jeli76. Juan85]. These have been used primar- moving camera. Proceedings. IEEE Workshop on Mfotion. In-ine. CA.
ily for speech recognition. but the technique is valid for a 1989.
wide variety describable by sequience of discrete s% mbols lChcn82l C. H. Chen. A stud% oif tesnire classificat ions usings pectral

ha\ ing an underlying probabilistic relationship, features, in Proceedings. 6th In trnational. Con~creuie on I'a'crn Rci.-
ogniriaoi. Munich. 1982. pp. 1064-1067ý

REF:ERENCES lChun86) H. W. Chun. a representaition for temporal sequence and
duration in nassis el'. parallel netn orks: Fxploiting link connections. in

f~lids 6. Adis . Inherent ambiguities in recos erinig 341) motion and Procediniv,% ofA.A1.MX. Am~ov.u 1'986.

structure fromn a noiNx lthw% ficld, in Cromplnt'%. I. er', .sol. lConn801 R. W. Conners and C. A. ILirloss. A theoretical comparison
/Ii('u ', con ( "~Ifp/iarrlso o 'i', 1 ?111 idPw~ , ~ Pisr.i. '5 pp. (if icxuiie algoruhihm. II1J.1. 7tanm. I'A.lI 203). 19180. )104-222

7o -7-. )Cuit77I J. Fi. (utitling and L. 1. Koiloss ski. Recogniiing friends b\



NELSON AND POLANA 89

their walk: Gait perception without familiarity cues, Bull. Psychon. segmentation, in Proceedings, IEEE Conference on Computer Vision
Soc. 9, 1977, 353-356. and Pattern Recognition, 1989. pp. 326-332.
[Cutt8ll J. E. Cutting, Six tenets for event perception. Cogmution 10, [Marr79] D. Matt and T. Poggio, A Computational Theory of Human
1981, 71-78. Stereo Vision, Proc. R. Soc. London B 264, 1979, 301-328.
(Dins88] I. Dinstein, A new technique for visual motion alarm. Pattern [Moro79J H. P. Morovec, Visual Mapping by a Robot Rover, Proc.
Recogn. Lett. 8(5), 1988, 347. I1CAM, 1979, pp. 598-600.
[Elma88] J. E. Elaman, Finding Structure in Time. Technical Report INage83] H. H. Nagel, Displacement vectors derived from second or-
8801. Center for Research in Language, University of California, San der intensity variations in image sequences, Comput. Vision Pattern
Diego, 1988. Recognit. Image Process. 21, 1983. 85-117.
[Ewar87] J. P. Ewart, Neuroethology of releasing mechanisms: Prey- [Nage86] H. H. Nagel and W. Enkelmann, An investigation of smooth-
catching in toads, Behau. Brain Sci. 10, 1987, 337-405. ness constraints for the estimation of displacement vector fields from
[Feld88i J. E. Feldman, Time, Space and Form in Vision, Technical image sequences. IEEE Trans. PAMI ,5, Sept. 1986, 565-593.
Report 244, University of Rochester Department of Computer Science, [Nels88] R. C. Nelson and J. Aloimonos, Finding motion parameters
1988. from spherical flow fields (or the advantages of having eyes in the back
[Godd89] N. H. Goddard, Representing and recognizing event se. of your head) Biol. Cybernet. S8, 1988, 261-273.
quences, Proceedings, AAAI Workshop on Neural Architectures for (Nels89] R. C. Nelson and J. Aloimonos, Using flow field divergence for
Computer Vision, Minneapolis, August, 1988. obstacle avoidance in visual navigation, IEEE Trans. PAM) 11(10), Oct
[Grim86J W. E. L. Grimson, The combinatorics of local constraints in 1989, 1102-1106.
model-based recognition and localization from sparse data, J. ACM (Nels90] R. C. Nelson, Moving object detection by a moving obscrver:
33(4), 1966, 658-686. Two qualitative methods, in preparation.

(Hara73J R. M. Haralick, K. Shanmugam, and I. Dinstein, Textural [Pent89] A. Pentland and K. Mase, Lip Reading: Automatic Visual
features for image classification, IEEE Trans. Systems Man Cybernet. Recognition of Spoken Words, M.I.T. Media Lab Vision Science Tech-
3(6), Nov. 1973, 610-621. nical Report 117, Jan. 1989.

[Heeg87) D. Heeger, Optical flow from spatio-temporal filters, Proceed- [Praz8lj K. Prazdny, Determining the instantaneous direction of mo-
ings 1st International Conference on Computer Vision, 1987. pp. 181- tion from optical flow generated by a curvilinear moving observer.
190. Comput. Vision Graphics Image Process. 22, 1981, 238-248.
[Hild87J E. C. Hildreth and C. Koch, The analysis of visual motion (RashSOJ R. Rashid, Lights: A System for the Interpretation of Moving
from computational theory to neural mechanisms, Ann. Rev. Neurosci. Light Displays, PhD thesis, Department of Computer Science, Univer-
10, 1987. sity of Rochester, 1980.
[Hoffl2J D. D. Hoffman and B. E. Flinchbaugh, The interpretation of [Reic88J W. Reichard and M. Engelhaaf, Movement detectors provide
biological motion, Biol. Cybernet. 42, 1982, 195-204. sufficient information for local computation of 2-D velocity field, Na-
(Horn8l] B. K. P. Horn and B. G. Schunk, Determining optical flow, turwissenschaften 74, 1988, 313-315.
Artif. Intell. 17, 1981, 185-204. [Rime9O] R. Rimey and C. M. Brown, Sequential behavior as a selec-
(Jefi76] F. Jelinek, Continuous speech recognition by statistical meth- tive attention mechanism: Modeling eye movements with hidden Mar-
ods, Proc. IEEE 64, 1976, 532-556. kov models, in preparation.

[Joha73J G. Johansson, Visual perception of biological motion and a [Schu84J B. G. Schunck, Motion segmentation by constraint line clus-
model for its analysis, Perception Psychophy. 14, 1973, 201-211. tering in, IEEE Workshop on Computer Vision: Representation and

[Joha761 G. Johansson, Spatio-temporal differentiation and integration Control, 1984, pp. 58-62.

in visual motion perception, Psychol. Res. 38, 1976, 379-393. [Tank87] D. W. Tank and J. J. Hopfield, Concentrating information in
time: Analog neural networks with applications to speech recognition[Juan85] B. H. Juang and L. R. Rabiner, Mixture autoregressive hidden polmi rceigFrtItrainlCneec nNua

Si- problems, in Proceedings, First International Conference on NeuralMarkov models for speech signals, IEEE Trans. Acoustics Speech Sig- Networks, 1987, pp. 455-468.
nal Processing 33(6), Dec. 1985, 1404-1413. lThom86] W. B. Thompson and J. K. Kearney, Inexact vision, in Work-

[Kane82] H. Kaneko and E. Yodogawa, A Markov random field appli- shop on Motion, Representation, and Analysis, May, 1986, pp. 15-22.
cation to texture classification, in Proceedings, Pattern Recognitionand Image Processing. Las Vegas, June, 1982, pp 22l-225. [Tsa8l81 R. Y. Tsai and T. S. Huang, Estimating 3-D motion parameters

of a rigid planar patch 1, IEEE ASSP 30, 1981, 525-534.
[Kash821 R. L. Kashyap, R. Chellappa, and A. Khotanzad, Texture [Tsai84] R. Y. Tsai and T. S. Huang, Uniqueness and estimation of
classification using features derived from random field models, Pattern three-dimensional motion parameters of rigid objects with curved sur-
Recognit. Lent. 1, 1982, 43-50. faces, IEEE Trans. PAMI 6, 1984, 13-27.

[LawsSO] K. 1. Laws, Textured Image Segmentation. Ph. D. disserta- [Ulm79] S. Ullman, The interpretation of structure from motion, Proc.
tion, Department of Engineering, University of Southern California, R. Soc. London B, 263, 1979, 405-426.
USCIPI Report No. 940, Jan. 1980. [Urasg88 S. Uras, F. Girosi, and V. Torre, A computational approach to

[Litt88J J. J. Little, H. H. Bulthoff, and T. Poggio, Parallel optical flow motion perception, Biol. Cybernet. 60, 1988, 79-87.
using local vote counting, in 2nd International Conference on Computer [Verr8"] A. Verri and T. Poggio. Against quantitative optical flow, in
Vision, 1988, 454-459. International Conference on Computer Vision, June 1987, pp. 171-180.
[Long8li] H. C. Longuet-Higgins, A computer algorithm for recon- [Waxm87] A. Waxman, Image flow theory: A framework for 3-D infer-
structing a scene from two projections, Nature 293, 1981. ence from time varying imagery, in Advances in Computer Vision (C.

(Mali891 J. Malik and P. Perona, A computational model of texture Brown, Ed.), Erlbaum, Hillsdale, NJ. 1987.



Detecting Activities

Ramprasad Polana and Randal Nelson

Department of Computer Science
University of Rochester

Rochester, New York 14627
Email: polanaxcs.rochester.edu and nelson~cs.rochester.edu

Abstract to be motion patterns which are • A3ly periodic but
are limited in spatial extent, and m.. 4 eveatstobeiso-

The recognition of repetitive movements char- lated imple motions that do not exhibit any temporal
acteristic of walking people, galloping horses, or spatial repetition. Examples of temporal textures in-
or flying birds is a routine function of the dude wind blown trees or grass, turbulent flow in cloud
human visual system. It has been demon- patterns, ripples on water, the motion of a flock of birds
strated that humans can recognise such ac- etc. Examples of activities are walking, running, rotat-
tivity solely on the basis of motion informa- ing or reciprocating machinery, etc. Examples of motion
tioa. We present a novel computational ap- ents are isolated instances of opening a a--or, tarting
proach for detecting such activities in real iam- of a car, throwing a ball etc.
age sequences on the basis of the periodic na-
ture of their signatures. The approach u It turns out that temporal textures can be effectivelyguts a low-level feature based activity recg- treated with statistical techniques analogous to those
nition mechanism. This contrasts with earlier used in gray-level texture disiminatio. A previous
model-based approaches for recognizing such paper [Polana and Nelson, 1992I describes this. Activ-
activities. ities and motion events, on the other hand, are more

discretely structured, and techniques similar to those
used in static object recognition would be expected to

I Introduction be useful in their classification. Since different sorts of
techniques mus be used to distinguis the differait sortsThe motion recognition ability of the human visual 9 mtinit would be useful to have a method for mak-

temn is remarkable. People are able to distinguish both .
highly structured motion, such as that produced by amg a preliminary classification of the motions present in
walking, running, swimming or flying birds,. and more an image. In this paper, we describe a robust method
statistical patterns such as that due to blowing @now, for detecting and localizing periodic acivities, including
flowing water or fluttering leaves. The classic demon- ones, such as walking or flying, that involve simultane-
stration of pure motion reognition by humans is pro- ous translation of the actor. The method is based an fre-
vid by Moving Light Display experiments [Johansaon, quency domain analysis of an image in which low-level
1973S. More subtle movement characteristics can be dis- motio mifomation has been used to isolate mad track
tinguishod as well. For example, human observers can lke ations of activity. The method also suggests
identify the actor's gender and even identify the actor a way of using low-level structural features to classify
if known to them by his or her gait. Similar discrimi- activities once they have been detected.
nation abilities using motion -alone have been observed Motion recognition techniques, both of the discrete
in non-human animals as well [Ewart, 19871. This bio- and textural variety have the potential to disambiguate
logical use of motion probably reflects the fact that for the motions of different origin. The motions of many
certain taks, visual motion provides more effective cues natural objects can be classified as periodic activities,
than other modes of visual perception. Motion is a par- including hpman walking. Duplication of the recogni-
ticularly useful cue for certain types of recognition due tion ability of these motions in machine system would
to the fact that it is relatively easy to extract the mo- . be usdul.in a number of applications, such as automated
tion field independent of illumination and shading of the surveillance. %lotion detection via image differencing can
image- be used for intruder detection; however such systems are

As a first step towards motion recognition by a ma- subject to false alarms, especially in outdoor environ-
chine, we define three classes of motion according to the ments, since the system is triggered by anything that
spatial and temporal uniformity exhibited, so that differ- moves, whether it be a human, a dog, or a tree blown
cnt motions can be recognized using different techniques by the wind. Another application is in industrial mon-
appropriate to their inherently different characteristics. itoring. Many manufacturing operations involve a long
We define temporal textures to be the motion patterns sequence of simple operations each performed repeatedly
of indeterminate spatial and temporal extent, activities and at high speed by a specialized mechanism at a par-



ticular location. It should be possible to set up one or method of change detection for surveillance applications
more fixed cameras that cover the area of interest, and based on the spectral energy in a temporal difference
to characterize the allowed motions in each region of the image. This was not generalized to other motion fea-
image(s). tures or more sophisticated recognition. Koller, Heinze

and Nagel [1991 developed a system that tracks mov-
2 Related Work ing vehicles and characterizes their trajectory segments

in terms of natural language concepts. Gould and Shah
Although motion plays an important role in biological [19891 represent motion characteristics of moving objects
recognition tasks, motion recognition in general, has re- by recording the important events in their trajectory.
ceived little attention in the literature compared to the They propose the use of the resulting trajectory primal
volume of work on static object recognition. Most com- sketch in a motion recognition system. Allmen and Dyer
putational motion work in motion in fact, has been con- have developed a method of extracting spatiotemporal
cerned with various aspects of the structure-from-motion curves corresponding to moving objects and applied the
problem. There is a large body of psychophysical liter- technique to detection of cyclic motions [Alnmen and
ature addressing the perception of motion, most of it Dyer, 19901. All the above require the difficult task of
concerned with primitive percepts. A modest amount robustly computing the trajectories or spatiotemporal
of this work addresses more complicated motion recog- curves from image sequences before attempting recogni-
nition issues [Johansson, 1973, Cutting, 1981, Hoffman tion, and the demonstrations of their techniques involve
and Flinchbuagh, 1982, Hildreth and Koch, 1987], but only synthetic image sequences.
the models and descriptions have typically not been im-
plemented. Various computational models of tempo- 3 Activity Detection
ral structure, have been proposed (e.g. (Chun, 1986,
Feldman, 19881) but much of this work is at a fairly high Activities involve a regularly repeating sequence of mo-
level of abstraction, and has not actually been applied tion events. If we consider an image sequence as a spa-
to visual motion recognition except in rather artificial tiotemporal solid with two spatial dimensions x, y and
tests. one time dimension t, then repeated activity tends to

Goddard [19891 considers recognizing event sequences give rise to periodic or semi-periodic gray level signals
from Moving Light Display (MLD) images. His work along smooth curves in the image solid. We refer to
addresses the representation of motion event sequences these curves as reference curves. If these curves could be
and their recognition assuming certain invariant im- identified and samples extracted along them over several
age features. His input consists of the joint angles cycles, then frequency domain techniques could be used
and angular velocities computed from the motion of in order to judge the degree of periodicity.
the dots in the light displays. The joint angles and Before defining the reference curves, first we shall for-
angular velocities are invariani to rotation in the im- malize the concept of a periodic object. An object is
age plane, scale and translation. A challenging part defined as a set of points P. Associated with each p E P
in computing these invariants is to recover the con- is a function Xp(t) giving its location (in a fixed 3D co-
nectivity of the individual dots (by body parts) in the ordinate system) as a function of time. A stationary
MLD images. A domain independent approach to this periodic object (ie. a stationary object exhibiting peri-
problem is given by Rashid. Rashid LRashid, 1980, odic activity) has the property that Xp(t) = Xp(t + ')
O'Rourke and Badler, 1980] considered the computa- for all p E P, where r is the time period for one cycle
tional interpretation of moving light displays, particu- of the activity and is independent of p. We now define
larly in the context of gait determination. This work em- a translating periodic object. Such an object has the
phasized rather high-level symbolic models of temporal property that X (t) - Y (t) + Z(t), where Yp satisfies
sequences, an approach made possible by the discrete na- Y,(t) = Yp(t + v' and 4(t) is a path in 3D space inde-
ture of the moving light displays. The results were quite pendent of p. It can be assumed that Z(O) = 0 so that
sensitive to discrete errors and thus highly dependent X,(0).= Y,(O). Intuitively, a periodic object character-
on the ability to solve the correspondence problem and ized by Yp(t) is translated along the path Z(t) (we are
accurately track joint and limb positions. This severely assuming the object does not undergo any rotation and

* limits the general applicability of the method. the viewing angle does not change). If we compensate
A few studies have considered highly specific aspects for the translation of the object, we would be looking at

of motion recognition computationally. Pentland [Pent- a stationary periodic object as shown by the equation:
land and Mase, 19891 considered lip reading, and imple- Xp(t)-Z(t) = Yp(t) = Y,(i+ r) = Xp(t+ - Z(t+ r).
mented a system that could recognize spoken digits with Note that Z(t) is not necessarily periodic. Note also that
70%-90% accuracy'over 5 speakers. The system required a stationary periodic object is a special case of translat-
the location of the lips to be entered by hand, and de- ing periodic object with no translation, or in other words
pended on an explicitly constructed lip model. Some Z(t) = 0 for all t.
temporal pattern recognition work has been done in the Corresponding to each point p of a translating peri-
context of speech processing [Juang and Rabiner,. 1985, odic object, we define a 3D-reference curve R,(t) to be
Tank and Hopfield, 1987, Elaman, 19881. But the appli- the path Xp(0) + Z(t). We also define a 2D-reference
cability of the techniques to motion recognition has not curve rp(t) corresponding to a point p of the object, to
been considered. be the projection of 1P(t) onto the image plane over time

Anderson et al. [Anderson et al., 1985] describe a (hence rp(i) is a curve in (z, y, t) space). The gray-level



signal along the 2D-reference curve r,(t) is determined stant velocity component modulated by whatever peri-
by the set of points of the object that appear along the odic motion the reference point undergoes. Thus, if we
3D-reference curve R4(1). It can be shown that the same know the average velocity of the person over several cy-
set of points of the object recur periodically along each cles, we can compute the spatiotemporal line of motion
reference curve 4,(t). For example, the point p is on along which the periodicity can be observed. If the per-
the reference curve 1P(t) at time zero, and it coincides son moves with average velocity (u, v) the spatiotempo-
with the reference curve at regular intervals of r (since ral line of motion will be determined by the equations
Xp(r) = Yp(r) + Z(r) = Yp(O) + Z(7) = Xp(O) + Z(r)). (z, y) = (u, v) * t + (zo, io), where (z, y) is the position
Similarly, every other point of the object on the reference of the object in space at time t and (Zo, to) is the posi-
curve Rp(t) recurs along RP(t) at intervals of r. tion at time zero. This applies to any object undergoing

constant velocity locomotion.

3.1 Periodicity Detection
From Fourier theory we know that any periodic signal
can be decomposed into a fundamental and harmonics.
That is, we can consider the energy of a periodic signal to

V be concentrated at frequencies which are integral multi-
ples of some fundamental frequency. This implies that if
we compute the discrete Fourier transform of a sampled

I,- 2periodic signal, we will observe peaks at the fundamen-
tal frequency and its harmonics. Hence, in theory, the
periodicity of a signal can be detected by obtaining its
Fourier transform and checking whether all the energy
in the spectrum is contained in a fundamental frequency

___......._and its integral multiples.
The real-world signals, however are seldom perfectly

periodic. In the case of signals arising from activity
in image sequences, disturbances can arise from errors
in the uniform translation assumption, varying back-
ground and lighting behind a locomoting actor, and

----. 4- -- Iother sources. In addition, for computational purposes,
---- *-- W -.. --------- .. * -. we need to truncate the signal at some finite length which

- ------.... ...... * -......- W.....- may not be an exact integral multiple of its period. Nev-
-....... -------.•- . - ----.. • ertheless, the frequency defined by the highest amplitude"In" often represents the fundamental frequency of the signal.

Figure 1: stationary circular rotation: temporal fre- Hence we can get an idea of the periodicity in a signal by
quency and phase summing the energy at the highest amplitude frequency

and its multiples, and comparing that quantity to the
energy at the remaining frequencies. In practice, sinceWe shall illustrate the concept with two examples, one peaks in a Fourier transform tend to be slightly broad-

stationary activity (one produced by a stationary peri- eaks in a Farietrasorm ind toe sightlynbrof

odic object) and the other involving a uniform transla- ened for a variety of reasons, including the finite length of

tion of the actor, i.e. a locomotory activity. If the activ- the sample, we derfine the periodicity measure p of a sig-

ity is stationary, the reference curves are lines parallel to nal as a normalized difference of the sum of the power

the temporal dimension. For example, a circularly ro- spectrum values at the highest amplitude frequency and

tating ring gives rise to a temporally periodic signal at its multiples, and the sum of the power spectrum values

every pixel. This is illustrated in figure 1. In the case of at the frequencies halfway between. That is,

uniform translation, the curves are straight lines at some - F - F(,+,2 ))/(y Fi, + E
angle that depends on the velocity. For general trans- -

lation and perspective projection, the lines associated
with a given actor approaching the camera, form a bun- where F is the energy spectrum of the signal f and v? is
die with a common intersection, the vanishing point. For the frequency corresponding to the highest amplitude in
many practical situations, however, the vanishing point the energy spectrum.
is far enough removed that the lines can be considered The measure is normalized with respect to the total
to be effectively parallel, energy at the frequencies of interest so that it is one for a

Consider the case of human walking. This is an ex- completely periodic signal and zero for a flat spectrum.
ample of a non-stationary activity; that is, if we attach In general, if a signal consists of frequencies other than
a reference point to the person walking, that point does one single fundamental and its multiples, its periodicity
not remain at one location in the image. If the per- measure will be low.
son is walking with constant velocity, however, and is Because the signal along any given reference curve in
not too close to the camera, then the reference point the image solid may be ambiguous, we need a way of
moves across the image on a path composed of a con- combining periodicity measures of a number of signals



from reference curves associated with the same actor. erence curves were taken as the lines in the spatiotem-
The simplest idea would be simply to sum the power poral solid parallel to that generated by the linear-fitted
spectra of the various signals, and apply the periodic- trajectory of the centroid. Signals were extracted along
ity measure to the resultant curve. Unfortunately, this these curves, and those that displayed significant spread
does not work, primarily because, although there is a over a period of at least half as long as the signal were
fair amount of energy at the fundamental frequency, and selected for processing. This had the effect of eliminat-
quite a few signals in which high periodicity is present, ing the need to process regions in which no motion oc-
there are also a lot of samples where the periodicity is curred, as well as regions affected only by an occasional
not evident, or which appear periodic at some other fre- blip. The periodicity measures for all signals extracted
quency. "T be net affect, is that all this energy at other fre- is computed and are used in computing periodicity mea-
quencies can swamp the main signal if they are combined sure P for the entire image sequence as described above.
additively. What does work, is a form of non-maximum
suppression, where the periodicity measure is obtained 3.2 Experiments
for each power spectrum separately. Each frequency w We ran experiments on four different activities, and a
is then assigned a value equal to the sum of the peri- number of non-periodic motions. The sequences were
odicity measures P,, from all the signals whose highest first recorded on video and then digitized later with suit-
amplitude occurred at that frequency. The result is the able temporal sampling so that at least four cycles of the
same as suppressing all but the maximum frequency in activity were captured in 128 frames. Following is a de-
each transform, weighting each by the periodicity mea- scription of each activity and the conditions under which
sure of the signal, and summing them. The maximum they were digitized.
value of this combined signal is taken as the fundamental
frequency, and the associated periodicity measure is the p Walk: A person walking acroas a room viewed in
average of the periodicity measures of the contributing profile. Six sequences of 128 frames of size 128x128
signals. pixels were obtained. Half the sequences contained

Thus, the periodicity measure P for an entire image one person and the other half a second.
sequence is defined as * Exercise: A person performingjumpingjacks. Four

sequences of 128 frames of 128x128 pixels, two each
P = max(P./n.) of two different people.

where n. and P, are the number of pixels at which * Swing: A person swinging viewed from the side.
the highest amplitude frequency is w and the sum of Six sequences of 128 frames of 128x128 pixels, three
periodicity measures at those pixels respectively, each of two different people.

Finally, in order to apply the technique to real data, * Frog: A toy frog simulating swimming activity
we need a way of extracting reference curves and the viewed from above. Four sequences of 128 frames
associated signals from an image sequence. In the fol- of 64x256 pixels.
lowing, we assumed that any activity that existed in the
data would be either stationary, or locomotory in a man- s Nonperiodic: Various sequences taken from televi-
ner that produced an overall translating motion. We also sion shows and live outdoor shots: splashing wa-
assumed that there was at most one actor in the scene, ter, closeup of crowd at a political rally, a plane
though a certain amount of background motion could be flying overhead, a robot hand picking up and ma-
tolerated. A third assumption is that the viewing angle nipulating objects (2 sequences), the input to an
and the scene illumination does not change significantly eye tracker (eyeball movements), leaves fluttering
so that the intensity along the reference curves remains in the wind, turbulent flow in a stream. In all, 8
periodic. The first assumption turns out not to be too sequences of 128 frames of 128x128 pixels.
restrictive - a large number of natural periodic activi- The swing and exercise activities were shot outdoors and
ties fit into one of the two categories. The second can contained background motion as well. Among the peri-
be relaxed with some additional preprocessing. Refer to odic activities, a single sequence of uniform rotation is
the discussions section for how this can be achieved and included as well. Sample images of these activities are
how the other assumptions can be relaxed as well. shown in figures 2 and 3.

The first step of the algorithm is to identify locations The periodicity measures computed using the above
in the scene where movement of any sort is occurring, algorithm are plotted .for all 20 periodic and all 8 non-
This is done by computing the normal flow magnitude periodic sequences in figure 4. As is evident from the
at each pixel between each successive pair of frames us- graphs and the projected scatter plot, the technique sep-
ing a spatiotemporal differential method. Those pixels at arates complex periodic from non-periodic motion nicely.
which significant motion is present are marked, and the The requirement that an empirically determined thresh-
centroid of the marked pixels computed in each frame. old be used is not a great drawback in this case, nor
The mean velocity (if any) of the actor is then com- is it particularly surprising, since even the the intuitive
puted by fitting a linear trajectory to the sequence of notion of periodic activity falls on a continuum. Is the
centroids. This is where the one-actor assumption comes motion of a branch waving somewhat irregularly in the
into play. If several actors were present, simple cluster- wind periodic or non-periodic? Here, we classified it as
ing techniques could be used to isolate the regions in non-periodic, but it had one of the higher periodicity
the scene corresponding to different activities. The ref- measures, as might be expected.



4 Discussion car passing. That periodicity can be detected even in
ydetection algorithm can be sum- this case demonstrates that the technique is reasonably

Our periodic activity tolerant of background clutter and an occasional distur-
marixed as follows: bance. The technique also provides a method for localiz-

"* Input: The input to the algorithm is a digitized im- ing activity in the scene by back-projecting the reference
age sequence consisting of 128 frames of resolution curves having high periodicity measures into the imae
128x128 pixels, solid.

"* Output: A periodicity measure indicating the So far we have assumed that the actors giving rise
amount of periodicity in observed in the image se- to the activity move with constant velocity along lin-
quence. This is used to decide whether the image ear paths. The case of nonlinearly moving objects can
sequence contains a periodic activity and if so, to be handled by tracking the object of interest given a
locate the region of the activity, coarse estimate of its initial location and velocity. This

"* Step 1. Compute normal flow magnitude at each would generate reference curves that were not straight
pixel between each successive pair of frames using lines. We have already demonstrated the usefulness of
the differential method. the centroid of motion for computing the velocity of lin-

early moving objects. It could also be used for tracking"* Step 2. Mark pixels corresponding to signifcant the actors moving on more complex trajectories. Use of
motion in the scene by thresholding the normal flow the motion centroid can be unreliable in estimating. the
magnitude. Compute centroid of the marked pixels centroid of the object if the shape of the object changes
in each frame. Compute the mean velocity (if any) as it moves. In this case use of a prediction and correc-
of the actor by fitting a linear trajectory to the tion mechanism using past values over a sufficiently long
sequence of centroids. Take reference curves to be period can help.
the lines in the spatiotemporal solid parallel to the The detection scheme also assumes that there is only
linear trajectory of centroids of motion. one activity in the scene except for some background

"• Step -3. Extract gray-level signals along the refer- clutter. If there are multiple activities in the scene,
ence curves. Compute the dominant frequency w this detection technique can still be applied provided
and the periodicity measure P, for each individual the activities can be spatially isolated so that they do
signal extracted. - not interfere with each other. In this case they can seg-

"* Step 4. Compute overall periodicity measure P for mented using the motion information and later tracked
the image sequence using formula given in the last separately. Even an occasional crossing of different ac-
section. tivities can be tolerated as long as the regions can be

We have assumed a number of things for the method separated again later. In our experiments, the periodic
to work correctly. First, we assumed that there is only activity samples consit of at least four cycles of the ac-
one actor in the scene in approximately constant linear tivity. Minimum four cycles were used to detect the ac-locomotion, and that the motion of the actor is signifi- tual frequency given that there is a considerable amountcantly higher than that of the background motion. We element of non-repetitive structure from the backgroundalso assumed that the viewing angle and scene illumina- in the case of translating actors.tion does not change significantly. Further, it is assumed The complexity of detection is proportional to thetht does notir chage sequeniica consists of at least four number of pixels involved in the activity. About half thethat the entire image sequence cnitofalesfur work is computing the fast Fourier transforms at each ofcycles of the periodic activity if there is any. The follow- he is Mosting the rest ourie timefis otped by
ing is a discussion of some of the merits of the algorithm the pixels. Most of the rest of the time is occupied by
and some approaches to deal cases where the assump- the motion detection process. The detection procedure
tions are violated, currently runs on an SGI machine using four processors

The method we described satisfies the several desir- and it take approximately 15 seconds to process a 128
able invariances. It is invariant to image illumination, frame sequence of 128x128 images.
contrast, translation, rotation and scale. It is also in-
variant to the magnitude of locomotory motion and the 4.1 Recognition of Activities
speed of the activity. It is also fairly robust with respect The first stage in recognizing an activity is to detect that
to small changes in viewing angle. The periodicity mea- an activity.exists, and localize it in the scene. This paper
sure does not depend on the number of pixels involved has described a technique for accomplishing this. Future
in the activity. If desired, a restriction on the minimum work will utilize information computed in the detection
number of pixels can be imposed so that only activities stage for recognition and classification of specific activi-
of a minimum size can be recognized. The swing and ties. The detection scheme utilizes only the magnitude of
exercise sequences were taken outdoors where there is the Fourier transform to obtain the periodicity measure.
a small amount of background motion. This comprises The phase of the Fourier transform is also computed at
not only moving trees and plants, but also moving peo- each location in the image and we propose to use this in-
pie and occasional crossing of a car. The thresholding formation along with other low-level information in the
stage on motion magnitude in step 2 of the algorithm image, for recognition. For example. walking can be de-
(in our implementation one-half pixel per frame is used) scribed as a sequence of motion events regularly occur-
eliminates small background motion, but it can not elim- ring at each spatial location. The cycle of motion events
inate larger background motion such as produced by a at different spatial locations in the image have a fixed



phase difference. These phase differences are valuable in [Hoffman and Flinchbuagh, 1982) D.D. Hoffman and
characterizing the activities. B.E. Flinchbuagh. The interpretation of biological mo-

tion. Biological Cybernatics, pages 195-204, 1982.
5 Conclusion [Johansson, 19731 G. Johansson. Visual perception of

We have described a method of activity detection. This biological motion and a model for its analysis. Per-
technique uses a periodicity measure on gray-level signals ception and Psychophysics, 14:201-211, 1973.
extracted along spatiotemporal reference curves. We (Juang and Rabiner, 19851 B.H. Juang and L.R.. Rao-
have illustrated the technique using real-world examples biner. Mixture autoregressive hidden markov models
of activities, and shown that it robustly detects complex for speech signals. IEEE Trans. Acoustics, Speecd end
periodic activities, while excluding non-periodic motion. Signal Processing, 6:1404-1413, 1985.
WVe proposed a technique to recognize these activities us- (Koller el al., 19911 D. Koller, N. Heinze, and .-,H.
ing the detection scheme described here. It is not dear Nagel. Algorithmic characterization of vehicle trajec-
how much the periodicity alone is useful for recognition tories from image sequences of motion verbs. In Proc.
but we believe the phase information is valuable for ac- of IEEE Computer Vision and Pattern Recogiin,
tivity recognition. Future work will concentrate on the pe 995, 1991.
development of robust phase features that can be used in pore ad-95 , 19 0'.
conjunction with previously developed motion and gray- (O'Rourke and Badler, 1980i J. O'Rourke and N.I.level features to classify activities. Badler. Model-based image analysis of human mo-

tion using constraint propagation. PAMI, 3(4):522-
537, 1980.
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Figure 2: Sample images from periodic sequences: walk, exercise, swing and rotation



Figure 3: Sample images from nonperiodic sequences: people, robot band, plane and leaves
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Figure 4: Periodicity measure for Periodic and Nonperiodic sequences
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Abstract

The recognition of repetitive movements characteristic of walking people, galloping horses, or flying birds

is a routine function of the human visual system. It has been demonstrated that humans can recognize such

activity solely on the basis of motion information. We demonstrate a general computational method for

recognizing such movements in real image sequences using what is essentially template matching in a motion

feature space coupled with a technique for detecting and normalizing periodic activities. This contrasts with

earlier model-based approaches for recognizing such activities.
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1 Introduction

The motion recognition ability of the human visual system is remarkable. People are able to distinguish

both highly structured motion, such as those produced by walking, running, swimming or flying animals and

birds, and more statistical patterns such as those due to blowing snow, flowing water or fluttering leaves.

The classic demonstration of pure motion rtcognition by humans is provided by Moving Light Display

experiments [Johansson, 1973], where human subjects were able to distinguish activities such as walking,

running or stair climbing, from lights attached to the joints of an actor. More subtle movement characteristics

can be distinguished as well. For example, human observers can identify the actor's gender, and even identify

the actor if known to them, by his or her gait. Similar discrimination abilities using motion alone have been

observed in non-human animals as well (Ewart, 1987e. This biological use of motion probably reflects the

fact that for certain tasks, visual motion provides more effective cues than other modes of visual perception.

Motion is a particularly useful cue for certain types of recognition due to the fact that it is relatively easy

to extract the motion field independent of illumination and shading of the image.

As a first step towards motion recognition by a machine, we define three common classes of visual motion

on the basis of the spatial and temporal regularity of the signal. Different recognition techniques apply to

the different classes. We define the first class, temporal textures to be motion patterns that exhibit statistical

regularity but have indeterminate spatial and temporal extent. Examples of temporal textures include wind

blown trees or grass, turbulent flow in cloud patterns, ripples on water, the motion of a flock of birds etc.

The second dass, activities, consists of motion patterns that are temporally periodic and possess compact

spatial structure. Examples of activities include walking, running, rotating or reciprocating machinery, etc.

A third class motion events consists of isolated simple motions that do not exhibit any temporal or spatial

repetition. Examples of motion events are isolated instances of opening a door, starting of a car, throwing

a ball etc. On can imagine other combinations of attribute, e.g. spatially periodic and temporally limited,

but these to not seem to occur broadly in natural visual environments.

It turns out that temporal textures can be effectively treated with statistical techniques analogous to

those used in gray-level texture discrimination. A previous paper [Polana and Nelson, 19921 describes this.

Activities and motion events, on the other hand, are more discretely structured, and techniques similar to

those used in static object recognition would be expected to be useful in their classification.

In this paper, we describe a robust method for recognizing activities, including ones, such as walking, that

involve simultaneous translation of the actor. In an earlier paper [Polana and Nelson, 19931, we described

an algorithm to detect periodic activities in an image sequence making use of the periodic nature of the

activity. The recognition algorithm utilizes the periodic activity detection algorithm as a first step in the

computation of a normalized a feature vector which is then used to classify detected activity as one of several

known activities.
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Motion recognition algorithms, both for temporal texture and activity, have potential applications in

several areas. One area is automated surveillancer. Motion detection via image differencing can be used for

intruder detection: however such systems are subject to false alarms. especially in outdoor environments,

since the system is triggered by anything that moves, whether it is a person, a dog, or a tree blown by the

wind. Motion recognition techniques can be used disambiguate such situations. Another application is in

industrial monitoring. Many manufacturing operations involve a long sequence of simple operations each

performed repeatedly and at high speed by a specialized mechanism at a particular location. It should be

possible to set up one or more fixed cameras that cover the area of interest, and to characterize the allowed

motions in each region of the image(s).

2 Related Work

Although motion plays an important role in biological recognition tasks, motion recognition in general, has

received little attention in the literature compared to the volume of work on static object recognition. Most

computational motion work in motion in fact, has been concerned with various aspects of the structure-from-

motion problem. There is a large body of psychophysical literature addressing the perception of motion,

most of it concerned with primitive percepts. A mod..,. anount of this work addresses more complicated

motion recognition issues [Johansson, 1973, Cutting, 1981, Hoffman and Flinchbuagh, 1982, Hildreth and

Koch, 1987], but the models and descriptions have typically not been implemented. Various computational

models of temporal structure, have been proposed (e.g. [Chun, 1986, Feldman, 1988]) but much of this work

is at a fairly high level of abstraction, and has not actually been applied to visual motion recognition except

in rather artificial tests.

A specialized area that has seen some attention is the interpretation of moving light displays. Goddard

J (19891 considers recognizing event sequences from such images. His work addresses the representation of

motion event sequences and their recognition assuming certain invariant image features. His input consists

of the joint angles and angular velocities computed from the motion of the dots in the light displays. The

joint angles and angular velocities are invariant to rotation in the image plane, scale and translation. A

challenging part in computing these invariants is to recover the connectivity of the individual dots (by body

parts) in the MLD images. A domain independent approach to this problem is given by Rashid [Rashid, 1980,

O'Rourke and Badler, 1980]. This work considers the computational interpretation of moving light displays,

particularly in the context of gait determination. This work emphasized rather high-level symbolic models

of temporal sequences, an approach made possible by the discrete nature of the representation. The results

were quite sensitive to discrete errors and thus highly dependent on the ability to solve the correspondence

problem and accurately track joint and limb positions. This severely limits the general applicability of the



method.

A few studies have considered highly specific aspects of motion recognition computationally. Anderson et

aW. [Anderson et at., 19851 describe a method of change detection for surveillance applications based on the
spectral energy in a temporal difference image. This was not generalized to other motion features or more

sophisticated recognition. Pentland [Pentland and Mase, 19891 considered lip reading, and implemented a

system that could recognize spoken digits with 70%-90% accuracy over 5 speakers. The system required

the location of the lips to be entered by hand, and depended on an explicitly constructed lip model. Some

temporal pattern recognition work has been done in the context of speech processing [Juang and Rabiner,

1985, Tank and Hopfield, 1987, Elaman, 19881, but the applicability of the techniques to motion recognition

has not been considered.

Finally, there is a body of work based on the analysis of trajectories. Koller, Heinze and Nagel [1991]

developed a system that tracks moving vehicles and characterizes their trajectory segments in terms of natural

language concepts. Gould and Shah [1989] represent motion characteris of moving objects by recording

the important events in their trajectory. They propose the use of the resulting trajectory primal sketch in a

motion recognition system. Allmen and Dyer have developed a method of extracting spatiotemporal curves

corresponding to moving objects and applied the technique to detection of cyclic motions [Alimen and Dyer,

1990]. Tsai et al. [Tsai et a., 19931 have also worked on cyclic motion detection using curvature trajectories

to detect cycles by means of Fourier domain techniques. All the above require the difficult task of robustly

computing the trajectories or spatiotemporal curves from image sequences before attempting recognition

and the demonstrations of their techniques involve principally synthetic image sequences.

3 Detecting Activities

The first step in recognizing an activity is to determine that an activity exists, and localize it in the scene.

In an earlier paper we have described a technique for accomplishing this [Polana and Nelson, 19931. The

present work will utilize the information computed in the detection stage for recognition and classification

of specific activities.

Activities involve a regularly repeating sequence of motion events. If we consider an image sequence as a

spatiotemporal solid with two spatial dimensions x, I and one time dimension t, then repeated activity tends

to give rise to periodic or semi-periodic gray level signals along smooth curves in the image solid. We refer to

these curves as reference curves. If these curves could be identified and samples extracted along them over

several cycles, then frequency domain techniques could be used in order to judge the degree of periodicity.

To clearly define the reference curves, we need to formalize the concept of a periodic object. An object

is defined as a set of points P. Associated with each p E P is a function Xp(t) giving its location (in a
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fixed 3D coordinate system) as a function of time. A stationary periodic object (ie. a stationary object

exhibiting periodic activity) has the property that Xp(t) = Xp(t + r) for all p E P, where r is the time

period for one cycle of the activity and is independent of p. A slight generalization gives us a definition for

a translating periodic object. Such an object has the property that Xp(t) = Yp(t) + Z(t). where )Y satisfies

I' (t) = Yp(t + r) and Z(t) is a path in 3D space independent of p. It can be assumed that Z(O) = 0 so that

Xr(O) = Yp(O). Intuitively, a periodic object characterised by Y,(t) is translated along the path Z(t) (we

are assuming the object does not undergo any rotation and the viewing angle does not change).

If we can determine the translational path of the object by some sort of tracking procedure, then we need

only consider stationary periodic objects as shown by the equation: X,(t) - Z(t) = Y (t) = Y,(t + r) -

Xp(t + T) - Z(t + T). More formally, corresponding to each point p of a translating periodic object, we

define a 3D-reference curve R,(t) to be the path Xp(O) + Z(t). We also define a 2D-reference curve rp(t)

corresponding to a point p of the object, to be the projection of R,(t) onto the image plane over time (hence

r,(t) is a curve in (z,y,t) space). The gray-level signal along the .2D-reference curve rp(t) is determined by

the set of points of the object that appear along the 3D-reference curve RP(t). It can -be shown that the

same set of points of the object recur periodically along each reference curve R,(t). For example, the point

p is on the reference curve Rp(t) at time zero, and it coincides with the reference curve at regular intervals

of r (since X,(r) = Y,(r) + Z(r) = Yp(O) + Z(r) = Xp(O) + Z(T)). Similarly, every other point of the object

on the reference curve R,(t) recurs along 1,(t) at intervals of T.

Given an image sequence containing a moving object, the detection scheme works as follows: First,

the object is tracked using a low-level process based on aggregation of moving pixels. The track is used

to generate reference curves and sample motion signals are extracted along -them. Each of the signals is

processed using frequency domain techniques to compute a measure of periodicity. The periodicity measures

of individual signals are combined to produce a periodicity measure for the entire tracked object, which is

then thresholded to decide whether a periodic activity is present in the sequence.

The following is a step-by-step description of the periodic activity detection algorithm:

"* Input: The input to the algorithm is a digitized 256-level gray-valued image sequence.

" Output: A periodicity measure indicating the amount of periodicity in observed in the image sequence.

This is used to decide whether the image sequence contains a periodic activity and if so, to locate the

region of the activity.

"* Step I. Compute normal flow magnitude at each pixel between each successive pair of frames using a

differential method.

"* Step 2. Mark pixels corresponding to significant motion in the scene by thresholding the normal flow

magnitude. Compute centroid of the marked pixels in each frame. Compute the mean velocity (if
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any) of the actor by fitting a linear trajectory to the sequence of centroids. Take reference curves to

be the lines in the spatiotemporal solid parallel to the linear trajectory of centroids of motion. This

simple tracking process is currently adapted to a single actor moving linearly, but is easily extended to

multiple actors and other paths as long as the tracks are smooth. and the actors are separated most

of the time.

"Step 3. Extract motion signals along the reference curves. Compute the dominant frequency and the

periodicity measure for each individual signal extracted. We define the periodicity measure pr of a

signal f as a normalized difference of the sum of the power spectrum values at the highest amplitude

frequency and its multiples, and the sum of the power spectrum values at the frequencies halfway

between. That is,

P1 E A - FjF~i+,/2))/(E Fi)
i i i

where F is the energy spectrum of the signal f and tv is the frequency corresponding to the highest

amplitude in the energy spectrum.

" Step 4. For each frequency w assign a value equal to the sum of the periodicity measures P. from all

the signals whose highest amplitude occurred at that frequency. Compute overall periodicity measure

P for the image sequence using formula P = max.(P,,/ni) where n,, and P. are the number of pixels

at which the highest amplitude frequency is w and the sum of periodicity measures at those pixels

respectively.

A more complete discussion of the periodicity detection process and the assumptions made can be found

in the previously cited paper.

4 Recognizing Activities

Once at -ctivity has been identified and tracked in a scene, the next step is to recognize it. The tracking and

periodicity detection algorithms provide spatial and temporal normalization that can be used to simplify the

recognition procedure. In particular, recall that the periodicity detection procedure provides a periodicity

measure for each active pixel in a tracked object. By backprojecting this measure, we can locate the pixels in

each frame that display periodicity at the dominant frequency. Since these pixels are likely to belong to the

actor of interest, we can use this backprojection to refine our initial segmentation, which was based solely

on aggregate motion. By fitting a frame to this refined segmentation we compensate for variation in spatial

scale and position. Currently this is done on the assumption that the distance of the actor does not change

significantly over the sample (typically 4 cycles), but a simple change in the frame-fitting procedure can allow
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for smooth scale change as might aesult during an approaching motion. Similarly, the fundamental frequency

allows us to frame the activity in time, and compensate for variation in temporal scale (i.e. frequency).

The end result of the normalization procedure is a spatio-temporal solid containing the activity of interest

in a form that is invariant to spatial scale, spatial translation, and temporal scale. The next step is to

compute a descriptor for this solid that can be used to classify the activity it represents. This sounds like

a three dimensional template match, and in fact, with the appropriate motion features in the slots of the

template, such an approach works well. Essentially, we capitalize on the fact that a periodic activity is

characterized by regularly repeating motion events that have fixed spatial and temporal relationships to

each other.

Ir more detail, the process is as follows' We divide one cycle of the spatio-temporal solid representing the

activity into XxYxT cells by partitioning the two spatial dimensions into X, Y divisions respectively and the

temporal dimension into T divisions. We then select a local motion statistic and compute the same statistic

in each cell of the spatiotempbral grid. The feature vector in this case is composed of XYT elements each of

which is the value of the statistic in a particular cell - essentially a three dimensional template.

One issue that affects the measures described above is the fact that so far, the normalized spatio-temporal

solid, while corrected for temporal scale (frequency) is not corrected for temporal translation (phase). There

are a couple of ways to handle this. One is to pick some robust temporal feature to define zero phase, and

normalize all samples with respect to this feature. One feature that works fairly robustly is to take the time

of maximum difference between total motion in the left and right half fields. Alternatively, since the pattern

matching phase of the algorithm currently represents only a small fraction of the total computational effort,

and the temporal resolution of the pattern is typically small (i.e., less than 10 samples per cycle), we can

simply try a match at each possible phase and pick the best. We have found in our experiments that this

method works better than the first. Hence, the results are reported using this kind of matching only.

We experimented with three different local statistics. The first was the dominant motion direction in

each cell. This is approximated by computing the histogram of normal flow directions weighted by the

corresponding normal flow magnitude and selecting the direction with highest histogram value. The second

statistic represented the summed motion magnitude in the dominant motion direction. The third statistic is

simply the summed normal flow magnitude in each cell. The directional information is ignored in this case.

As it turned out, this last statistic, which is some ways the simplest, worked best.

4.1 Experiments

We ran experiments on seven different types of activities. The image sequences were first recorded on video

and then digitized later with suitable temporal sampling so that at least four cycles of the activity were

captured in 128 frames. Following is a description of each activity and the conditions under which they were
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digitized.

* Walk: A person walking on a treadmill.

"* Exercise: A person exercising on a machine.

"* Jump: A person performing jumping jacks.

"• Swing: A person swinging viewed from the side.

"* Run: A person running on a treadmill.

"* Ski: A person skiing on a skiing machine.

"* Frog: A toy frog simulating swimming acivity viewed from above.

All samples were digitized at a spatial resolution of 128x128 pixels, except those for walk and run which

were digitized at a resolution of 64x128 pixels. Pixels were 8 bit gray levels. The swing and exercise activities

were shot outdoors and contained background motion.

We first digitized eight samples of each activity by the same person under the same conditions with respect

to scene illuminatin, background, and camera position. We created the reference database taking half of the

samples belonging to each activity. In other words, the reference database consists of four samples of each

of the seven activities. Sample images of these activities awe shown in figures 1. The remaining four samples

of each activity are used to create the test database. In addition, we digitized four samples of walking by a

differnt person and eight samples of the frog under differmt lighting conditions and different background

and foreground gradients. These samples also differed from the reference database in frequency, speed of

motion, and spatial scale. Examples of these samples are shown in Figure 2 These samples were added to the

test database. The samples in the test database were classified by a nearest centroid classification technique

using the samples in the reference database as training set.

We conducted experiments using the three local motion statistics described above. In each case the feature

vector consists of the local statistic computed over each of a set of cells constituting a partition of the spatio-

temporal solid. We divided each spatial dimension into four divisions and the temporal dimension into six

divisions, so that we get a feature vector of length 96. To reiterate, the three local statistics were: direction of

maximum motion (where the directions are quantized into eight sectors), the motion magnitude in maximum

motion direction, and total motion magnitude in each cell. Sample features vectors are illustrated in 3 using

the total motion magnitude statistic for a walk and a run sequence.

We initially computed the feature vectors by finding a zero phase marker within a cycle using the method

described previously. However, more reliable results were achieved by matching each test feature vector with

the reference feature vector six times, corresponding to different temporal offsets, and choosing the best
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match obtained. The results reported below utilize the latter method. This classification resulted in correct

classification of every sample in the test database, including the samples using a different actor and different

backgrounds, which were not represented in the reference database.

The results of classification using different variations are shown in terms of percentage of test cases

correctly classified in table 1. Somewhat to our surprise, the simplest statistic - the total motion magnitude

gave better results than either of the statistics involving direction of motion. The reason for this turned

out to be related to the resolution of our images. In order to digitize enough frames to test the technique,

we had subsampled the images to 128 x 128 pixels. After filtering for periodicity, significant motion, and

direction, it was often the case that few pixels with all these properties were left in any one cell, which made

for a large amount of stochastic noise in the signal. Simply put, we didn't have high enough resolution data

to appropriately utilize the more specific statistics.

The percentage of correct classification does not give a full indication for the quality of classification.

Hence, we also illustrate the results by the confusaio matrix which shows how closely test samples belonging

to various classes match the reference samples of the different classes. The confusion matrix using the total

motion magnitude statistic is shown in Figure 4. A large square indicates a good match. As can be seen from

this table, some motions, for instance the swimming frog, do not resemble anything else in the database,

while others, for instance running and skiiing, are more likely to be confused, The results seem to correspond

more or leas to human intuition about how similar the motions are.

Feature vector Total Test Correct Percent Failures

Samples Classifed Succe

direction of maximal motion 40 32 80 walk by different actor and
frog under different gradients

magnitude in maximal direction 40 39 97.5 walk by different actor

total motion magnitude 40 40 100 None

Table 1: Classification results

5 Discussion

The following is a step-by-step description of the periodic activity recognition algorithm:

"* Input: The input to the algorithm is a digitized 256-level gray-valued image sequence consisting of at

least four cycles of a periodic activity.

"* Output: A known class into which the activity is classified by the algorithm.
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Added CIuer Total Teat Sccemuful Corrctly

Pe .entage Samples Detected Cla•sified

25 4 3 3

50 4 3 3

75 4 2 0

100 4 2 0

150 4 1 0

200 4 0 0

Table 2: Classification results with motion clutter (samples are of walk)

"* Step 1. Compute normal flow magnitude at each pixel between each successive pair of frames using a

differential method.

"* Step I. Locate and track the activity in the image sequence using periodicity detection algorithm

described in section 2.

"* Step 3. Normalize the activity using pixels exhibiting periodic motion and compute a feature vector.

"• St 4. Classify the activity using nearest centroid algorithm.

The method we have described displays several desirable invaiances. It is robust to varying imag

illumination and contrast because the method uses only motion information which is invariant to these. It is

also invariant to spatial and temporal translation and scale due to the normalization of the feature vectors,

and the multiple temporal matching. It is also fairly robust with respect to small changes in viewing angle.

The swing and exercise sequences were taken outdoors where there is a small amount of background motion.

This comprises not only moving trees and plants, but also moving people and an occasional crossing of a car.

That the activities can be detected even in this case demonstrates that the technique is somewhat tolerant

of background clutter and the occasional disturbance.

To understand how much background clutter can be tolerated by this technique, we have experimented

with the walk samples by adding motion clutter produced by blowing leaves This structured motion clutter

is added in a controlled fashion so that its mean magnitude represents a varying percentage of the mean

magnitude of the signal, and the resulting samples are classified using the total motion magnitude statistic.

The results are tabulated in 2. The results show that the recognition scheme can tolerate motion clutter

whose magnitude is equal to one half that of the activity, and it displays degraded, but still useful performance

for even higher clutter magnitudes.
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We have assumed that the actors giving rise to the activity move with constant velocity along linear

paths. The case of nonlinearly moving objects can be handled by tracking the object of interest given a

coarse estimate of its initial location and velocity, (e.g. with a Kalman filter). This would generate reference

curves that are not straight lines. We have already demonstrated the usefulness of the centroid of motion

for computing the velocity of linearly moving objects, and providing a rough initial segmentation. It could

also be used for tracking the actors moving on more complex trajectories. Use of the motion centroid can

be unreliable in estimating the centroid of the object if the shape of the object changes as it moves. In this

case use of a prediction and correction mechanism using past values over a sufficiently long period can help.

The detection scheme also assumes that there is only one activity in the scene except for some background

clutter. If there are multiple activities in the scene, this detection technique can still be applied provided

the activities can be spatially isolated so that they do not interfere with each other. In this case they

can be segmented using the motion information and tracked separately. If a predictive tracker is used, an

occasional crossing of different activities can be tolerated as long as the regions can be separated again

later. In our experiments, the periodic activity samples consist of at least four cycles of the activity. Four

cycles were needed to reliably detect the fundamental frequency given that there is a considerable amount

of non-repetitive structure from the background in the case of translating.actors.

The complexity of recognition is proportional to the number of pixels involved in the activity. More than

half the work is computing the motion vectors at every pixel and then computing the fast Fourier transforms

at each of moving pixels. The remaining time is spent computing the feature vector, the time for which

depends on the local motion statistic computed. For a 128 image sequence, computation of the feature

vector of motion magnitudes takes about 3 seconds. The classification algorithm currently runs on an SGI

machine using four processors and it takes maximum 20 seconds to process a 128 frame sequence of 128x128

images.

6 Conclusion

We have described a general technique for periodic activity recognition. This technique uses a periodicity

measure to detect the activity and then a feature vector based on motion information to classify the activity

into one of several known classes. We have illustrated the technique using real-world examples of activities,

and shown that it robustly recognizes complex periodic activities.
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Figure 1: Sample images from periodic activities: walk, run, swing, jump, ski, exercise and toy frog
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Figure 2: Sample images of walk by a different actor and toy frog under different background and frequency

Figure 3: Sample total motion magnitude feature vector for a sample of walk (top) and a sample of run

(bottom), one cycle of activity is divided into six time divisions shown horizontally, each frame shows spatial

distribution of motion in a4x4 spatial grid (size of each square is proportional to the amount of motion in

the neighborhood).
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Figure 4: Confusion matrix for the feature vector using total motion magnitude

18


